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Abstract: The extremum representation for the non-diagonal element of
Hermitian matrix through it's eigenvalues is presented in the paper. The
expression for diagonal elements, corresponding to extreme non-diagonal
elements, is obtained as well. There is an example of estimation for matrix
eigenvalues by the use of non-diagonal elements.
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It is known the following inequality for the spread of Hermitian matrix
[1]:

S(A′) ≥ 2 LM$′  (i ≠ j),     (1)

where S(A′) = 
PLQPD[

λ−λ  is the named spread; LM$′  in the right side is any non-

diagonal element of given matrix. In this paper I make this result precise on the
set of unitarily similar matrices

A ′ = βA β * , (2)
where β runs over the set of all unitary matrices; A is a given Hermitian matrix
of the dimensionality n. Below, it was established that the left part of the
inequality (1) is a precise upper bound of the right side under any β. It was
established as well, that if it holds next equality for the any non-diagonal
element:

S(A′) = 2 LM$′ , (3)

then corresponding diagonal elements are equal to

�

PLQPD[
λ+λ=′=′

MMLL $$ .    (4)

In mechanics of rigid deformed bodies it is known the formula for
extremal tangent stress at the given point of the body under various directions of
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elementary area, as well as the expression for normal stress on the area with
extreme tangent stress. Similar relations were also obtained for shearing strain
and stretch (refer to [2; §§5.16 and 6.5]). Named extremal relations, as a matter
of fact, are the equalities ����b�����under n = 3. The expression (4) in the case of
stress tensor A is written in the form

�

��
σ+σ=σQ

and let to obtain criteria of material’s strength. Therefore, in the special case of n
= 3 the result (4) is practically applicable.

The result (3) may be useful for evaluation of the eigenvalues of
Hermitian matrices, that has been grounded at the end of this paper.

For what follows, it is convenient to renumber the eigenvalues of A so
that 

PD[�
λ=λ , 

PLQ�
λ=λ .

Theorem. For any non-diagonal element of the unitarily similar Hermitian
matrix (2) we have an extremal representation:

�

��
λ−λ=′

LM$
¢

max ,    (5)

where λ1 is a maximum eigenvalue for matrix A; λ2 is a minimum eigenvalue
for this matrix. When the value LM$′  reaches upper bound (5), there hold an

equalities for diagonal elements:

�

��
λ+λ=′=′

MMLL $$ .    (6)

Proof. By carrying out unitary transformation (2), one can attain a
coincidence of any non-diagonal elements of initial and final matrices:

UVLM $$ =′ , i ≠ j; r ≠ s,

under following requirements for diagonal elements:

UULL $$ =′ ; VVMM $$ =′ .

Such transformation is attained by means of no more then two simple pivoting
motions. A being of such transformation means that it is sufficient to prove the
theorem under i = 1, j = 2.

We can also establish that there exists such unitary transformation, that

 





















λ+λλ−λ

λ−λλ+λ
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��

Q�2

2
$ ,    (7)
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where block 
�−Q�  is formed by eigenvalues of matrix A:

}QQ �� «GLDJ^«
��
�=−� ;

block O is zero rectangular matrix of corresponding dimensionality. One can
obtain matrix (7) by two consequent transformations: in the beginning go over to
main axises of matrix A, to get }Q���� «««GLDJ^«

���
�=′$ , and then execute

simple pivoting motion by means of a matrix
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2
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where 
�−Q(  is a unit matrix of an order specified by the index.

Thus, the set of unitarily similar matrices may be specified by a transform
(2), where matrix A is the right part of expression (7).

It follows from the said that we can reformulate the theorem in following
terms:

�

��

��

λ−λ=′$
¢

max ,    (8)

where A′ is obtained by unitary transform of matrix A, defined by (7). If upper
bound is reached, then it holds:

�

��

����

λ+λ=′=′ $$ .    (9)

To prove this statement we represent element 
��
$′  by means of formula

(2), where substitute the matrix A from the expression (7):

∑
=

∗ββ=′
Q

ON
NOON $$

�

����

,

 =

∑
=

∗∗∗∗∗ λββ+λ−λββ+ββ+λ+λββ+ββ=
Q

N
NNN

�

��

��

��������

��

��������
��

)()( .  (10)

Orthogonality of a rows of matrix ββ means that

�
�

������������
=ββ+ββ+ββ≡ββ ∑

=

∗∗∗
∗

∗
∗

Q

N
NN .        (11)

Consequently

∑
=

∗∗∗ 




 λ+λ−λββ+λ−λββ+ββ=′

Q

N
NNN$

�

��

��

��

����������
��

)( ;

∑
=

∗∗∗ λ+λ−λ⋅ββ+λ−λββ+ββ≤′
Q

N
NNN$

�

��

��

��

����������
��

.   (12)

Under chosen numbering of eigenvalues, we have:
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QNN ,, �
���

������ =λ−λ≤λ+λ−λ≤λ−λ− .      (13)

By replacing of values 
�

��
λ+λ−λN  in the inequality (12) with the proper

estimates from (13), we obtain:

�

��

�

������������

λ−λ





 ββ+ββ+ββ≤′ ∑

=

∗∗∗
Q

N
NN$ .     (14)

For what follows, we introduce vectors
( )Q����

�������

l ββββ= �D ;  ( )Q����
�������

l ββββ= �E .

These vectors have a unit Euclidean norm:

�== ∗
DDD ;   �== ∗

EEE ,  (15)

and, by using Cauchy-Schwartz inequality, we get an estimate for the expression
in parentheses from the right part of (14):

( ) �=⋅≤≤ ∗
EDED� .     (16)

Thus, value 
��
$′  can't be greater then 

�

��
λ−λ

, though reaches it in accordance

with expression (7). Therefore, equality (8) is proved.
Remark next. Since there hold inequalities (14) and (16), we see that if the

value 
��
$′  reaches upper bound (8), then holds EDED ⋅=∗ , i.e. vectors D  and

E  turn out to be collinear. Therefore, by taking into account the relations (15),
we establish:

����
β=β ; 

����
β=β ; 

����
β=β ; ... ; QQ ��

β=β .       (17)

Equalities (9) are proved by means of relations for elements of matrix β,
ensuring the condition

�

��

��

λ−λ=′$ .        (18)

We shall obtain these relations. We confine our consideration to the element

��
$′ . Likewise the formula (10), one can obtain:

∑
=

∗ββ=′
Q

ON
NOON $$

�

����

,

 =

∑
=

∗∗∗∗∗ λββ+λ−λββ+ββ+λ+λββ+ββ=
Q

N
NNN

�

��

��

��������

��

��������
��

)()( . (19)

In the beginning we consider the case of isolated eigenvalues λ1 and λ2, when
QNN ,, �

��
=λ<λ<λ .

and therefore holds:
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QNN ,, �
���

������ =λ−λ<λ+λ−λ<λ−λ− .      (20)

In the case of

�
�

��
>ββ∑

=

∗
Q

N
NN , (21)

from inequalities (20) and evaluation (12) we obtain a strict inequality (compare
with (14)):

�

��

�

������������

λ−λ





 ββ+ββ+ββ<′ ∑

=

∗∗∗
Q

N
NN$ .

As far as expression in parentheses does not exceed a unit, this inequality
disagrees to condition (18). Consequently, the inequality (21) is impossible, and,
by using the equalities (17), we establish:

QNNN ,, ��
��

==β=β .     (22)
Both inequalities (16) now become equalities, and we can see:

�
����������������

=ββ+ββ=ββ+ββ ∗∗ .

Module of a sum of two complex numbers was discovered to be equal to a sum
of their modules. Hence, main values of  these numbers' arguments coincide:

( ) ( )∗∗ ββ=ββ≡α
��������

argarg .
By taking into consideration two first equalities (17), we come to forms:

αβ=β L
H

����
;  αβ=β L

H
����

.        (23)
By using the expressions (22), (23), we convert the scalar product (11) as
follows:

�
������������������

=ββ+ββ=ββ+ββ=ββ α∗α∗∗∗
∗

∗
∗

LL
HH .

Hence
�

��������
=ββ+ββ ∗∗ .    (24)

In formula (19) the first sum in parentheses is the norm of first row of matrix β,
i.e.

�
��������

=ββ+ββ ∗∗ .   (25)
By substitution (22), (24) and (25) into the formula (19), we get required
equality (8).

Let now in the set of eigenvalues Q�� ««
�
�  one value is a greatest number

λ1, and one is a least number λ2, i.e. under given numbers r > 2, s > 2 we have:

 
��������LI���

�««���««

��

��

VUNN

VU

≠λ<λ<λ
==

(26)

Let us generalize the proof of equalities (8) for this case. Instead of the estimate
(12), now we have:
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∑
≠
>

∗∗∗∗∗ λ+λ−λ⋅ββ+λ−λββ−ββ+ββ+ββ≤′
VUN

N
NNNVVUU$

,
,�

��

��

��

��������������
��

.

Under assuming that

�
�

��
>ββ∑

≠
>

∗

VUN
N

NN

,
,

,

we obtain in this case the strict inequality

�

��

�

����������������

λ−λ
















ββ+ββ−ββ+ββ+ββ<′ ∑

≠
>

∗∗∗∗∗

VUN
N

NNVVUU$

,
,

.        (27)

As before, in the case under consideration the relations (16) take place, but dots
denote now the expression in parentheses from the formula (27). So the
inequality (27) is impossible under the condition (18). Consequently

VUNNNN ,,, ≠>=β=β ��
��

,     (28)
and under the condition (18) we obtain:

.�
������������

������������

=ββ+ββ+ββ+ββ=

=ββ−ββ+ββ+ββ ∗∗∗∗

VVUU

VVUU

(29)

Here we can establish again an equality of addends' arguments in the first
module:

( ) ( ) ( ) ( )∗∗∗∗ ββ−=ββ=ββ=ββ≡α VVUU ������������
argargargarg ,

and instead of expressions (23) we get:
αβ=β L

H
����

;  αβ=β L
H

����
;  αβ=β L

UU H
��

;  αβ−=β L
VV H

��
. (30)

After substitution of equalities (28), (30) into the condition of orthogonality
(11), we get the expression (compare with (24)):

�
������������

=ββ−ββ+ββ+ββ ∗∗∗∗
VVUU .       (31)

In this case the formula (19) is transformed to the form:

.)(

)(

)()(

�

�

��

��

������������

��

��������������

��

��

��������

��

����������

λ−λββ−ββ+ββ+ββ+

+λ+λββ+ββ+ββ+ββ=λββ+

+λββ+λ−λββ+ββ+λ+λββ+ββ=′

∗∗∗∗

∗∗∗∗∗

∗∗∗∗∗

VVUU

VVUUVVV

UUU$

   (32)

The last expression is obtained by the substitutions:

��

����
λ−λ+λ+λ=λ U ;  

��

����
λ−λ−λ+λ=λ V .
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If we make a substitution (31) into the last expression of formula (32), then,
taking into account that the first row of matrix β is normalized by a unit, we
obtain required equality (9).

We have considered the case when an order of both greatest and least
eigenvalues is 2 (according to assumptions (26)). Cases of any other orders for
these eigenvalues do not require special consideration because of their evidence.

Theorem is proved.

Besides of theoretical significance, the proved theorem can have practical
interest for evaluation of the eigenvalues of Hermitian matrices. It follows from
the theorem, that for the non-negatively definite matrix the greatest eigenvalue
can't be less then double module of non-diagonal element:

 LM$�
�

≥λ  (i ≠ j) , if A ≥ 0. (33)

Besides, next estimate for the minimum eigenvalue follows from the proved
theorem:

 LM$′−λ≤λ �
��

 (i ≠ j).     (34)

This estimate might be useful for badly conditioned positively definite matrices,
because algorithms of eigenvalues' calculation for such matrices lose stability if
any eigenvalue is close to zero [3].

Example. Give the estimates of values λ1, λ2 for non-negatively definite
matrix



















−
−−

−

=

����

����

����

����

$ .

Since for the Hermitian matrix LL$≥λ
�

, in given case we have �
�

≥λ .
Known relation for Euclidean norm of a matrix gives more strong estimate:

����
�

=≥λ
Q

(
$

.

From the relation (33) we obtain �
�

≥λ .
By solving the characteristic equation for given matrix one can get the

following eigenvalues: ����
�

=λ , ����
�

=λ . Known estimate LL$≤λ
�

 holds in
given case �

�
≤λ . By means of formula (34) we can estimate this eigenvalue

more precisely: ����
�

≤λ . Without exact value λ1 we also can use formula (34)

together with evaluation �����
�

=≤λ
(

$ . We obtain: �����
�

≤′−≤λ LM(
$$ .
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