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CONCAVE PROGRAMMING UNDER THE SIMPLEST LINEAR
CONSTRAINTS

2003, A.I. RUSAKOV

We present a stable algorithm of concave programming on a feasible polyhe-
dron, determined by finite bounds for the variables and a scalar condition of equality
type. The algorithm is based on branch and bound scheme, where the inspected re-
gions are cut off by successive tightening of the bounds.

1. Introduction

There are few basic schemes of concave programming under linear constraints, but
the corresponding methods have a limited applicability on some reasons. The approxi-
mation-combinatorial method is most commonly used, but its applicability is deter-
mined by the type of the objective function and the size of the problem [1]. The coni-
cal methods are considered as very effective, and numerical results make appearance
they are applicable for large-scale problems [2, 3]. But the author’s attempt to use the
conical method for optimizing on the feasible polyhedron of a high dimension (about
20) failed because of computational instability. In this paper we present the stable al-
gorithm of the following maximization problem for the convex function f(x), defined on
Em:
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where ii xx < for any i; feasible set M, defined by the relations (2) and (3), is not
empty and not degenerated to the point.

It is additionally assumed about function f(x), that the later is uniformly continu-
ous on the set

 U = {x: x ∈ P and f(x) ≤ fmax + ∆f0}, (4)

where P is hyperplane (2), fmax is exact maximum of the function f(x), ∆f0 is the given
tolerence of the criterion function maximization.

The elaborated algorithm allows one to find an ε-optimal solution of this prob-
lem, i.e., a solution xopt such that f(xopt) ≥ fmax – ε, where ε = ∆f0.



The uniform continuity assumption is applicable for extensive class of the prob-
lems. For instance, a convex function on Em is continuous on Em [4]; therefore, (4) is a
closed set. Suppose that this set is bounded (it’s true for a broad class of functions
f(x)); then it is compact set. A continuous function on a compact set is uniformly con-
tinuous [5]. Note, though, that uniform continuity has been used for the proof of an al-
gorithm’s finiteness, and is not obligatory in applications.

The problem (1)—(3) arises in performance control of high-accuracy systems,
namely in testing the hypothesis about the variance of goal function, based on a series
of regression experiments [6, 7].

Denote M0 the hyperparallelepiped (HP) of the form (3). An HP, defined by the
restrictions for any component (for example, (3)), we shall name correctly oriented.
The denotations M0, ix , ix , we shall use to refer not only to the initial HP defined
with problem restrictions, but to any included into the initial and correctly oriented HP.
Accordingly, we consider polyhedra in the hyperplane of the form

0MPM I= .

The feasible set of problem (1)—(3) is one of such polyhedra. This extensions of terms
are conditioned by the fact that, at each step of the proposed optimization algorithm,
the bounds of HP M0 are modified to specify the domain M that is not yet explored
(not cut off).

2. The basic notations

We introduce a system of notations and conceptions to ground the solution of
problem (1)—(3). The theorems are not proved, because the proofs are fairly simple
and the analogous facts for polyhedra in the m-dimensional space are well known [8].

We define a polyhedron vertex in the hyperplane as the point x such that we
have for some integer I ≥ 1:
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The vertex is said to be degenerated, if III xxx or 0 = , and non-degenerated, in oppo-
site case. Note that, for degenerated vertex, the number I is not determined uniquely.

We define a polyhedron edge, adjacent to vertex x0, as the m-dimensional seg-
ment of non-zero length, such that only two components vary over its extension:
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where ∆ ≥ 0 if ii xx =0 and ∆ ≤ 0 if ii xx =0 , i ≠ I; the values of ∆ are defined with con-
straints (3). Each non-degenerated vertex has m – 1 adjacent edges. Each edge has two



vertices as extreme points: one of them is the vertex appearing in the definition of the
edge, another is named adjacent vertex.

We define a simplest cone in the hyperplane as a point set in En, specified by a
system of linearly independent vectors B∗i, 1,1 −= mi , and a cone vertex (point xA), as
follows:
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A ray of the form 0, ≥λ+λ ∗ iAii xB , is said to be an edge of simplest cone.
Theorem 1. A polyhedron in the hyperplane is contained in the simplest cone,

constructed from the non-degenerated vertex of the polyhedron and its adjacent edges.
We define a simplex as a portion of simplest cone specified with additional con-

dition:
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m points Ax (the vertex of cone) and 1,1, −=+ ∗ miCBx iA , is said to be verti-
ces of simplex.

Theorem 2. The convex function reaches its maximum on the simplex at a vertex
of this simplex.

The similar statement may easily be proved for a polyhedron M.
We define a cutting hyperplane as a hyperplane of the form

bΤ(x – xA) = 1, (9)
such, that the half-space

bΤ(x – xA) ≤ 1
cuts off simplex (8) from cone (7). Here the upper index “T” denotes transposition.

Theorem 3. For the simplex, given on a cone with a vertex xA by the expressions
(7) and (8) where C = 1, the cutting hyperplane (9) is determined by the vector b with
the components
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where B+ is a pseudoinverse of the matrix
),...,( 11 −∗∗= mBBB . (11)

3. The solving algorithm

To simplify the description of the optimization algorithm we introduce the fol-
lowing assumption: for every polyhedron M created in the algorithm, the vertices being



tested for the maximum by comparing of the objective function with a current highest
value, are nondegenerate.

In practice this assumption is ensured in following way [9]: if degenerated ver-
tex has been discovered, a small correction is introduced into the task’s parameters
(for instance, to correct the value A in the condition (2)).

We shall assume that one has to seek only the maximum of a function f(x), i.e.
no maximizer is required. For seeking a maximizer xopt, every computation of the best
(record) value Rec = f(x) should be supplied with assignment: xopt = x.

Presented optimization algorithm is based on the brunch-and-bound scheme,
where every optimization step (brunching step) consist in operation of partitioning of
the tested domain M into three subsets as follows:

1) a subset, that is tested for the maximum first, using internal cutting-off algo-
rithm;

2) a subset, which analyzed with recursive run of brunching step;
3) a subset, that is tested in last turn by returning to the beginning of a current

step. The probability of repeated brunching in this subset is not high.
Subsets 2 and 3 may be empty or not empty only simultaneously.
At the current step, one carries out the analysis and

cutting of the first subset. Then one passes to the next step,
which may be either analysis of the subset 2, if it’s not
empty, or analysis of the subset 3 of preceding step, in oppo-
site case.

In Fig. 1 it is shown graphical representation of any
optimization step. Vertex 0 depicts the original subset at the
plot, vertices 1, 2 and 3 represent the above-mentioned sub-
sets, numbered in a similar order. In Fig. 2 it is shown the
sample of optimization process in the form of the rooted
graph. In given case the root denotes the preparatory operations to the sequence of op-
timization steps. Hanging vertices of the graph are all the vertices of the first type and
also the vertices of the second and third types, if they correspond to empty subsets (in
Fig.2 such vertices are crossed over). Initial vertices of all steps are numbered in order
to their succession.

Before passing to the next step of branching in the case of nonempty subset of
the second type (i.e. before the recursion) one calculates the boundaries of HP M0,
which is smaller than at the previous step and determines the domain M to be investi-
gated. Finally the size of HP M0 becomes so small, that on the next step no subsets of
second and third type are selected and the brunching terminates.

In the cutting algorithm the criterion value is determined at the one of vertices of
the polyhedron M (at the point of the local maximum of f(x)). This value is assigned to
variable Rec (the best value or the record of an algorithm), if it’s greater then criterion
value attained before. Then a neighborhood of considered vertex is constructed in M,
so that the criterion is no greater within it than Rec + ∆f0. This neighborhood is cut off

Fig.1



from the set to be analyzed further, and remained unexplored domain is represented in
standard form 0MPM I= with modified (“contracted”) HP.

The same algorithm is used for cutting-off “unpromising” brunch, corresponding
to the third subset in the current partition. Therefore, while the cuts in the classical
branch and bound scheme use an upper bound for the criterion on a subset unpromis-
ing for branching, in new method we obtain the domain, where criterion do not surpass
the attained record up to optimization error. If unpromising subset is contained in this
domain, then corresponding brunch is cut off, else branching continues. A common
feature in both methods is that the ε-optimality criterion is used to terminate the search
[10]. This ensures the finiteness of the algorithm in difficult problems. In practice, this
allows one to terminate the search in a short time.

The initial data for internal cutting algorithm are as follows: the domain
0MPM I= , defined with altering boundaries of HP M0; the attained formerly rec-

ord’s value
Rec = Recinit

(at the first step we set Rec = –∞); parameter ∆f0; and the constant LB, which is set
greater by an order of magnitude then diameter of original HP (3), for example:

)(max20 ii
i
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The algorithm results in new value of a record Rec ≥ Recinit and the decision
about uncut domain existence. This domain, if exists, is given as follows:

′=′ 0MPM I ;

},1,:{0 mixxxxM iii =′≤≤′≡′ . (12)

Fig.2. Example of optimization graph in the bisection
method



Then the boundaries of HP M0 are modified so that ′= 00 MM .

 Algorithm 1

1. Using the simplex method the vertex of local maximum xA is determined in form
(5). If f(xA) > Rec, then we set: Rec = f(xA).

2. The directing vectors for the edges of polyhedron M adjacent to the point xA are
determined. Accordingly to (6), we have m – 1 vectors IimiB i ≠=∗ ,,1, , with the
components:

iIiiiki BBIkikB ∆=−=≠≠= ;andif,0 .

These vectors are renumbered so that numbers i increase from 1 to m – 1.
3. The hyperplane (9), cutting from the cone (7) the simplex S over which the criterion

function does not exceed Rec + ∆f0, is constructed:
3.1. The support vectors of the cutting hyperplane are constructed: for each vec-

tor B∗i the maximum normalizing coefficient C such that

0)( fRecCBxf iA ∆+≤+ ∗ and BEi LCB ≤∗ (13)

is determined. Then renormalizing is done as follows: ii CBB ∗∗ = .
3.2. The pseudoinverse B+ of matrix (11) is calculated: one removes the lower

string of a matrix B, inverts the resulting matrix by Gauss method and com-
pletes it with zero column.

3.3. The components of vector b is calculated in the form (10).
4. The presence of uncut domain M \ S is verified:

4.1. The maximum

)(maxmax AMx
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is determined with simplex procedure.
4.2. If 1max ≤L , then M \ S = ∅; i.e. the investigation of the domain M finished

because 0max ffRec ∆−≥ .
5. The boundaries ′ix and ′ix are determined for HP (12) that contains the domain M

\ S and has the edges of a least length.
6. One calculates the “contraction” parameter, measuring percentage decrease of a HP

size as follows:
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7. The assignments mixxxx iiii ,1,, =′=′= are carried out.

Explanations to the algorithm:



To i. 3.1: the restriction 0)( fRecxf ∆+≤ over the simplex S follows from the
first inequality of (13) and Theorem 2. The second inequality in (13) provides normal
execution if convex functions monotonically decreases on a ray [4, p. 104].

To i. 3.2: the stability of computations of matrix B+ is ensured by special form
of B. By normalization of support vectors, the matrix B is transformed to the form:
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where E are identity matrices of a proper order; O are zero rectangle matrices. One
easily can see that angle α between any vector-column of B and span of the others
satisfies to inequality:

2
2sin ≥α ,

i.e. there is no multicollinearity of support vectors [11] and pseudoinverse may be cal-
culated.

To i. 4.2: the conclusion that M \ S = ∅ is based on Theorems 1 and 3.
To i. 5: the boundaries ′ix and ′ix are obtained by linear programming algo-

rithm. HP (12) established in this item is thereafter called the contracted HP.
To i. 6: in further computations the parameter d is used for checking whether a

repeated cutting would be “promising” after the domain M has been modified. A repe-
tition of the algorithm is inexpedient if d ~ 1.

Since Algorithm 1 is an internal procedure in the branch and bound scheme, the
termination of analysis of current domain at i. 4.2 means cutting-off the corresponding
branch and passing to a new domain M.

After analysis of the first of three subsets selected at the brunching step has
been done, we have to solve the problem of maximizing of f(x) over the domain M
with downsized HP M0. Second and third subsets are constructed by dividing of ob-
tained HP into two halves:
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Respectively, second and third subsets have the forms 0
10liMP I and 0

20liMP I .
This feature explains the name “bisection algorithm” for Algorithm 2 presented

below. The variable N in the later algorithm is a number of recursion. The termination
of investigation of the domain M, pointed in the item 4.2 of Algorithm 1, means the
operations:

If N > 0, then go to i. 9 of Algorithm 2 (see below);
If N > 0, then finish: the problem (1)—(3) is solved. The maximum of criterion

is Rec.



In further description we use a conception of a stack, i.e. the memory space
where some values are saved before the recursion. After the recursion lately saved
values are extracted from the stack to reset corresponding variables.

Algorithm 2

1. Set N = 0.
2. Set −∞=Rec .
3. Execute Algorithm 1.
4. If d > 3 then go to i. 3.
5. Set N = N + 1.
6. One determines the number i0, specifying the partition of HP M0 into the halves

1,2,0
0

=lM li , and calculates the numbers l1, l2 of the halves to be analyzed in first
and second turn, respectively.

7. The boundaries of HP 0
20liM are saved in the variables mixx ii ,1,, 11 = (in particular,

iiii xxxx == 11 , if 0ii ≠ ).
8. Maximization of the function f(x) inside HP 0

10liM :
8.1. One of the bounds 

0ix or
0ix is modified in accordance with (15) where     l

= l1 and i = i0.
8.2. The contraction procedure is executed, i.e. execute the stand-alone i. 5 of

Algorithm 1 (the required vector b and vertex xA were calculated before in i.
3 of the current algorithm).

8.3. Set mixxxx iiii ,1,, =′=′= ; Rec1 = Rec.

8.4. Put the values 1;,1,;,1,, 11 Recmibmixx iii == into the stack.
8.5. Go to i. 2 (recursion).

Remark. The transition to the next item is possible only from i. 4.2 of Algorithm
1 and means the termination of the later recursion.
9.  Data preparations for the maximization inside HP 0

20liM :

9.1. The variables 1;,1,;,1,, 11 Recmibmixx iii == recover its value from the
stack.

9.2. If Rec1 > Rec then set Rec = Rec1.
9.3. Set mixxxx iiii ,1,, 11 === .

10. Maximization of the function f(x) inside HP 0
20liM :

10.1. Set N = N – 1.
10.2. Go to i. 3.



4. Finiteness of the algorithm and securing of an operating speed

Now we shall establish that, with a certain rules of setting of number i in i. 6 of
Algorithm 2, the length of a branch beginning in the rooted vertex of the optimization
graph would have upper bound, so the number of operations of Algorithm 2 would be
finite. In what follows, the Euclidean norm of a matrix (a vector) is denoted by E⋅ .

Theorem 4. Let a convex function f(x) is uniformly continuous on the domain
(4). Then there exists a value δ > 0 such that, for any plane polyhedron 0MPM I=
and for any vertex xA obtained by i. 1 of Algorithm 1, all points x ∈ M satisfying to
inequality

δ≤− EAxx (16)

belong to simplex S, constructed by i. 3 of mentioned algorithm.
Proof. Uniform continuity means that there exists ε′ > 0 such that on the domain

U holds
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But for any normalizing coefficient C determined in i. 3.1 of Algorithm 1, both
points xA and iA CBx ∗+ belong to U, and if the first inequality in (13) becomes an
equality, then after normalization we obtain ε′≥∗ EiB . So in general case we have for
normalized vectors iB∗ :

),min( BEi LB ε′≡ε≥∗ .

Introduce the matrix, composed of the norms of vectors iB∗ as follows:

}{ 11 ,...,diag
EmEB BBN −∗∗ ±±= .

Here the signs of diagonal entries are chosen so that BNBB 0= , where B0 is the matrix
from (14). Vector λ with the components defined by (7) for given x ∈ M evidently has
the form )()( 01

AB xxBN −=λ +− . Hence, for any point x ∈ M satisfying to inequality
(16), it follows:
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Thus, we can find a value δ, for which the inequality (8) is fulfilled with C = 1,
i.e. in account of Theorem 3 we establish that vector x belongs to the simplex S.

The theorem has been proved.

It is evident that, if procedure for choosing number i in Algorithm 2 secures de-
crease of diameter of HP M0 to zero for infinite brunching (as +∞→N ), then there
exists a number N0 such that, for any N ≥ N0 and for x ∈ M, the inequality (16) is ful-
filled. In view of Theorem 4, this means that corresponding brunch will be cut off at
the step i. 4 of Algorithm 1, and, therefore, the bisection algorithm will have been exe-
cuted in finite number of steps.

The efficiency of brunch-and-bounds method depends on the way of brunching,
in our case on the rule for choosing the indices i0, l1, l2 in i. 6 of the bisection algo-
rithm. Next choosing rule is recommended.

For a given HP M0 and cutting hyperplane (9), we associate with each polyhe-
dron 0

ilil MPM I≡  the contracted HPs (12). Denoting their volume by
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Given criterion ensures that the halves of HP have a minimum diameter after the
partition. Moreover, the half with a smaller volume is inspected in second turn. Thus,
on one hand, the maximum length of brunches of optimization graph is bounded, and,
on other hand, unpromising brunches should be cut effectively enough.

5. The outcome of trials

The computational results for different problems (1)—(3) let to draw some con-
clusions about performance of the bisection method. These conclusions are presented
below and elucidated by following testing example:
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(parameters A and w have been varied for some tests).
All computational results have been obtained on AT-compatible computer, the

processor is IDT WinChip C6 (200 MHz).
1. For a given dimension m the volume of computations in the bisection

method strongly depends on parameters 0,,, fAxx ii ∆ .



In confirmation to this conclusion in Fig. 3 we plot on the diagram a total oper-
ating time versus parameter A for m = 20 and m = 40. All points, except the one indi-
cated, belong to approximation curves. In comparison we plot the dependence of total
number of brunching vertices versus A. In Fig. 4 it is plotted the relation of total oper-
ating time versus the range ii xxw −= with a given m = 40 and A = 20. For a values w
> 1.2 one can reveal the decrease of approximation function, that corresponds to a
curves in Fig. 3: the peculiarity of the problem (17) is that optimization time  T(A)
reaches its maximum for
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1
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and rapidly decreases when A deviates from this value. It evokes the decrease of an
operating time under the essential increase of w and fixed A.

2. In the problems (1)—(3) of a certain class, the optimization time in the
bisection method increases with increase of m slower then in the total overselec-
tion method.

We mean that in new method for a certain class of problems the optimization
time is approximated with a relation α− )(~ cmT , where α > 0, while in the total
overselection method is typical the dependence T ~ am, a > 1. The total overselection
method has been chosen for comparison, because only this method is fit when m ~ 20.

The results of the test problem solution with both methods being compared are
plotted in Fig. 5. The smoothing function takes the next form in the total overselection
method:

T = 1.807·10–5 ·2.154m min;
and in the bisection method, respectively:

T = 5.37·10–3 ·(m – 10)3.04 min.
For m < 14 the total overselection method is advantageous, but the fast growth

of vertices number nM in the feasible HP as a function of m slows down catastrophi-
cally optimization process for m > 21. It should be noted though that, for a given m,
the number nM strongly depends on the parameters of the feasible domain. Thus, Con-
clusion 2 is not universal.

When constructing the relations 1 and 2 in Fig. 5, we haven’t revealed any dif-
ference between the maximization results of bisection method and total overselection
method. Besides, the point xA obtained with a first run of a simplex method (i. 1 in Al-
gorithm 1) turned out to be globally optimal. Similar situation was observed in the ap-
plied problem of performance control of missile samples [6, 12], thanks to that it is
possible to interpret the locally optimal solution as an approximation to the globally
optimal one and to gain the operation speed [12]. However, the cases of non-
coincidence of local and global solutions were found both in applied problems and test
problems of type (17) (the later for especial value A).

In Fig. 6 it is plotted on the diagram the used memory RAM versus dimension



Fig. 3. The plots for a volume of computations in the bisection
method versus parameter A of the test problem:
T — total operating time, minutes;
ngr — the number of brunching nodes for the optimization graph

Fig. 5. Optimization time – test prob-
lem dimension curves:
1 — total overselection method;
2 — bisection method

Fig. 4. The plot for an operating time versus
range-width w in the test problem



of the test problem (17). It may be seen, that it is enough DOS-memory for solving
problems with large values m.
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